
 UNIT-I

What is Python

Python is an object-oriented, high level language, interpreted, dynamic and multipurpose

programming language.

Python is easy to learn yet powerful and versatile scripting language which makes it

attractive for Application Development.

Python's syntax and dynamic typing with its interpreted nature, make it an ideal language for

scripting and rapid application development in many areas.

Python supports multiple programming pattern, including object oriented programming,

imperative and functional programming or procedural styles.

Python is not intended to work on special area such as web programming. That is why it is

known as multipurpose because it can be used with web, enterprise, 3D CAD etc.

We don't need to use data types to declare variable because it is dynamically typed so we can

write a=10 to declare an integer value in a variable.

Python makes the development and debugging fast because there is no compilation step

included in python development and edit-test-debug cycle is very fast.

Python Features

There are a lot of features provided by python programming language.

1) Easy to Use:

Python is easy to very easy to use and high level language. Thus it is programmer-friendly

language.

2) Expressive Language:

Python language is more expressive. The sense of expressive is the code is easily

understandable.

3) Interpreted Language:

Python is an interpreted language i.e. interpreter executes the code line by line at a time. This

makes debugging easy and thus suitable for beginners.

4) Cross-platform language:

Python can run equally on different platforms such as Windows, Linux, Unix , Macintosh etc.

Thus, Python is a portable language.

5) Free and Open Source:

Python language is freely available(www.python.org).The source-code is also available.

Therefore it is open source.

6) Object-Oriented language:

Python supports object oriented language. Concept of classes and objects comes into

existence.

7) Extensible:

It implies that other languages such as C/C++ can be used to compile the code and thus it can

be used further in your python code.

8) Large Standard Library:

Python has a large and broad library.

9) GUI Programming:

Graphical user interfaces can be developed using Python.

10) Integrated:

It can be easily integrated with languages like C, C++, JAVA etc.

Python History

 Python laid its foundation in the late 1980s.

 The implementation of Python was started in the December 1989 by Guido Van

Rossum at CWI in Netherland.

 ABC programming language is said to be the predecessor of Python language which

was capable of Exception Handling and interfacing with Amoeba Operating System.

 Python is influenced by programming languages like:

o ABC language.

o Modula-3

 Python Version
 Python programming language is being updated regularly with new features and

support. There are a lot of updation in python versions, started from 1994 to current

date.

 A list of python versions with its released date is given below.

Python Version Released Date

Python 1.0 January 1994

Python 1.5 December 31, 1997

Python 1.6 September 5, 2000

Python 2.0 October 16, 2000

Python 2.1 April 17, 2001

Python 2.2 December 21, 2001

Python 2.3 July 29, 2003

Python 2.4 November 30, 2004

Python 2.5 September 19, 2006

Python 2.6 October 1, 2008

Python 2.7 July 3, 2010

Python 3.0 December 3, 2008

Python 3.1 June 27, 2009

Python 3.2 February 20, 2011

Python 3.3 September 29, 2012

Python Applications

Python as a whole can be used in any sphere of development.

Let us see what are the major regions where Python proves to be handy.

1) Console Based Application

Python can be used to develop console based applications. For example: IPython.

2) Audio or Video based Applications

Python proves handy in multimedia section. Some of real applications are: TimPlayer, cplay

etc.

3) 3D CAD Applications

Fandango is a real application which provides full features of CAD.

4) Web Applications

Python can also be used to develop web based application. Some important developments are:

PythonWikiEngines, Pocoo, PythonBlogSoftware etc.

5) Enterprise Applications

Python can be used to create applications which can be used within an Enterprise or an

Organization. Some real time applications are: OpenErp, Tryton, Picalo etc.

6) Applications for Images

Using Python several application can be developed for image. Applications developed are:

VPython, Gogh, imgSeek etc.

There are several such applications which can be developed using Python

HOW TO INSTALL PYTHON

1. To install Python, firstly download the Python distribution from

www.python.org/download.

2. Having downloaded the Python distribution now execute it. Double click on the downloaded

software. Follow the steps for installation:

Click the Finish button and Python will be installed on your

systemSETTING PATH IN PYTHON

Before starting working with Python, a specific path is to set.

 Your Python program and executable code can reside in any directory of your system,

therefore Operating System provides a specific search path that index the directories

Operating System should search for executable code.

 The Path is set in the Environment Variable of My Computer properties:

 To set path follow the steps:

Right click on My Computer ->Properties ->Advanced System setting ->Environment

Variable ->New

In Variable name write path and in Variable value copy path up to C://Python(i.e., path where

Python is installed). Click Ok ->Ok.

Path will be set for executing Python programs.

1. Right click on My Computer and click on properties.

2. Click on Advanced System settings

Python Example

Python code is simple and easy to run. Here is a simple Python code that will print "Welcome

to Python".

A simple python example is given below.

1. >>> a="Welcome To Python"
2. >>> print a
3. Welcome To Python
4. >>>

Explanation:

 Here we are using IDLE to write the Python code. Detail explanation to run code is given in
Execute Python section.

 A variable is defined named "a" which holds "Welcome To Python".
 "print" statement is used to print the content. Therefore "print a" statement will print the

content of the variable. Therefore, the output "Welcome To Python" is produced.

Python 3.4 Example

In python 3.4 version, you need to add parenthesis () in a string code to print it.

1. >>> a=("Welcome To Python Example")
2. >>> print a
3. Welcome To Python Example
4. >>>

How to execute python

There are three different ways of working in Python:

1) Interactive Mode:

You can enter python in the command prompt and start working with Python.

Press Enter key and the Command Prompt will appear like:

Now you can execute your Python commands.

2) Script Mode:

Using Script Mode , you can write your Python code in a separate file using any editor of

your Operating System.

Now open Command prompt and execute it by :

3) Using IDE: (Integrated Development Environment)

You can execute your Python code using a Graphical User Interface (GUI).

All you need to do is:

Click on Start button -> All Programs -> Python -> IDLE(Python GUI)

You can use both Interactive as well as Script mode in IDE.

1) Using Interactive mode:

Execute your Python code on the Python prompt and it will display result simultaneously.

2) Using Script Mode:

i) Click on Start button -> All Programs -> Python -> IDLE(Python GUI)

ii) Python Shell will be opened. Now click on File -> New Window.

A new Editor will be opened . Write your Python code here.

Click on file -> save as

Run then code by clicking on Run in the Menu bar.

Run -> Run Module

Result will be displayed on a new Python shell as:

Python Variables

Variable is a name of the memory location where data is stored. Once a variable is stored that

means a space is allocated in memory.

Assigning values to Variable:

We need not to declare explicitly variable in Python. When we assign any value to the

variable that variable is declared automatically.

The assignment is done using the equal (=) operator.

Output:

1. >>>

2. 10

3. ravi

4. 20000.67

5. >>>

Multiple Assignment:

Multiple assignment can be done in Python at a time.

There are two ways to assign values in Python:

1. Assigning single value to multiple variables:

Eg:

1. x=y=z=50
2. print x
3. print y
4. print z

Output:

1. >>>
2. 50
3. 50
4. 50
5. >>>

2.Assigning multiple values to multiple variables:

Eg:

1. a,b,c=5,10,15
2. print a
3. print b
4. print c

Output:

1. >>>
2. 5
3. 10
4. 15
5. >>>

The values will be assigned in the order in which variables appears.

Basic Fundamentals:

This section contains the basic fundamentals of Python like :

i)Tokens and their types.

ii) Comments

a)Tokens:

 Tokens can be defined as a punctuator mark, reserved words and each individual word in a
statement.

 Token is the smallest unit inside the given program.

There are following tokens in Python:

 Keywords.
 Identifiers.
 Literals.
 Operators.

Tuples:

 Tuple is another form of collection where different type of data can be stored.
 It is similar to list where data is separated by commas. Only the difference is that list uses

square bracket and tuple uses parenthesis.
 Tuples are enclosed in parenthesis and cannot be changed.

Eg:

1. >>> tuple=('rahul',100,60.4,'deepak')
2. >>> tuple1=('sanjay',10)
3. >>> tuple
4. ('rahul', 100, 60.4, 'deepak')
5. >>> tuple[2:]
6. (60.4, 'deepak')
7. >>> tuple1[0]
8. 'sanjay'
9. >>> tuple+tuple1
10. ('rahul', 100, 60.4, 'deepak', 'sanjay', 10)
11. >>>

Dictionary:

 Dictionary is a collection which works on a key-value pair.
 It works like an associated array where no two keys can be same.
 Dictionaries are enclosed by curly braces ({}) and values can be retrieved by square

bracket([]).

Eg:

1. >>> dictionary={'name':'charlie','id':100,'dept':'it'}
2. >>> dictionary
3. {'dept': 'it', 'name': 'charlie', 'id': 100}
4. >>> dictionary.keys()
5. ['dept', 'name', 'id']
6. >>> dictionary.values()

7. ['it', 'charlie', 100]
8. >>>

Python Keywords:Keywords are special reserved words which convey a special

meaning to the compiler/interpreter. Each keyword have a special meaning and a specific

operation. List of Keywords used in Python are:

True False None and as

asset def class continue break

else finally elif del except

global for if from import

raise try or return pass

nonlocal in not is lambda

Identifiers

Identifiers are the names given to the fundamental building blocks in a program.

These can be variables ,class ,object ,functions , lists , dictionaries etc.

There are certain rules defined for naming i.e., Identifiers.

I. An identifier is a long sequence of characters and numbers.

II.No special character except underscore (_) can be used as an identifier.

III.Keyword should not be used as an identifier name.

IV.Python is case sensitive. So using case is significant.

V.First character of an identifier can be character, underscore (_) but not digit.

Python Literals

Literals can be defined as a data that is given in a variable or constant.

Python support the following literals:

I. String literals:

String literals can be formed by enclosing a text in the quotes. We can use both single as well

as double quotes for a String.

Eg:

"Aman" , '12345'

Types of Strings:

There are two types of Strings supported in Python:

a).Single line String- Strings that are terminated within a single line are known as Single line

Strings.

Eg:

1. >>> text1='hello'

b).Multi line String- A piece of text that is spread along multiple lines is known as Multiple

line String.

There are two ways to create Multiline Strings:

1). Adding black slash at the end of each line.

Eg:

1. >>> text1='hello\

2. user'

3. >>> text1

4. 'hellouser'

5. >>>

2).Using triple quotation marks:-

Eg:

1. >>> str2='''''welcome

2. to

3. SSSIT'''

4. >>> print str2

5. welcome

6. to

7. SSSIT

8. >>>

II.Numeric literals:

Numeric Literals are immutable. Numeric literals can belong to following four different

numerical types.

Int(signed

integers)

Long(long

integers)

float(floating

point)
Complex(complex)

Numbers(can be

both positive and

negative) with no

Integers of

unlimited size

followed by

Real numbers with

both integer and

fractional part eg: -

In the form of a+bj where a

forms the real part and b forms

the imaginary part of complex

fractional part.eg:

100

lowercase or

uppercase L eg:

87032845L

26.2 number. eg: 3.14j

III. Boolean literals:

A Boolean literal can have any of the two values: True or False.

IV. Special literals.

Python contains one special literal i.e., None.

None is used to specify to that field that is not created. It is also used for end of lists in

Python.

Eg:

1. >>> val1=10

2. >>> val2=None

3. >>> val1

4. 10

5. >>> val2

6. >>> print val2

7. None

8. >>>

V.Literal Collections.

Collections such as tuples, lists and Dictionary are used in Python.

List:

 List contain items of different data types. Lists are mutable i.e., modifiable.

 The values stored in List are separated by commas(,) and enclosed within a square

brackets([]). We can store different type of data in a List.

 Value stored in a List can be retrieved using the slice operator([] and [:]).

 The plus sign (+) is the list concatenation and asterisk(*) is the repetition operator.

Eg:

1. >>> list=['aman',678,20.4,'saurav']

2. >>> list1=[456,'rahul']

3. >>> list

4. ['aman', 678, 20.4, 'saurav']

5. >>> list[1:3]

6. [678, 20.4]

7. >>> list+list1

8. ['aman', 678, 20.4, 'saurav', 456, 'rahul']

9. >>> list1*2

10. [456, 'rahul', 456, 'rahul']

11. >>>

Python Operators

Operators are particular symbols which operate on some values and produce an output.

The values are known as Operands.

Eg:

1. 4 + 5 = 9

Here 4 and 5 are Operands and (+) , (=) signs are the operators. They produce the output 9.

Python supports the following operators:

1. Arithmetic Operators.

2. Relational Operators.

3. Assignment Operators.

4. Logical Operators.

5. Membership Operators.

6. Identity Operators.

7. Bitwise Operators.

Arithmetic Operators:

Operators Description

// Perform Floor division(gives integer value after division)

+ To perform addition

- To perform subtraction

* To perform multiplication

/ To perform division

% To return remainder after division(Modulus)

** Perform exponent(raise to power)

eg:

1. >>> 10+20

2. 30

3. >>> 20-10

4. 10

5. >>> 10*2

6. 20

7. >>> 10/2

8. 5

9. >>> 10%3

10. 1

11. >>> 2**3

12. 8

13. >>> 10//3

14. 3

15. >>>

Relational Operators:

Operators Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

<> Not equal to(similar to !=)

eg:

1. >>> 10<20

2. True

3. >>> 10>20

4. False

5. >>> 10<=10

6. True

7. >>> 20>=15

8. True

9. >>> 5==6

10. False

11. >>> 5!=6

12. True

13. >>> 10<>2

14. True

15. >>>

Assignment Operators:

Operators Description

= Assignment

/= Divide and Assign

+= Add and assign

-= Subtract and Assign

*= Multiply and assign

%= Modulus and assign

**= Exponent and assign

//= Floor division and assign

eg:

1. >>> c=10

2. >>> c

3. 10

4. >>> c+=5

5. >>> c

6. 15

7. >>> c-=5

8. >>> c

9. 10

10. >>> c*=2

11. >>> c

12. 20

13. >>> c/=2

14. >>> c

15. 10

16. >>> c%=3

17. >>> c

18. 1

19. >>> c=5

20. >>> c**=2

21. >>> c

22. 25

23. >>> c//=2

24. >>> c

25. 12

26. >>>

Logical Operators:

Operators Description

and Logical AND(When both conditions are true output will be true)

or Logical OR (If any one condition is true output will be true)

not Logical NOT(Compliment the condition i.e., reverse)

eg:

1. a=5>4 and 3>2

2. print a

3. b=5>4 or 3<2

4. print b

5. c=not(5>4)

6. print c

Output:

1. >>>

2. True

3. True

4. False

5. >>>

Membership Operators:

Operators Description

in Returns true if a variable is in sequence of another variable, else false.

not in Returns true if a variable is not in sequence of another variable, else false.

eg:

1. a=10

2. b=20

3. list=[10,20,30,40,50];

4. if (a in list):

5. print "a is in given list"

6. else:

7. print "a is not in given list"

8. if(b not in list):

9. print "b is not given in list"

10. else:

11. print "b is given in list"

Output:

1. >>>

2. a is in given list

3. b is given in list

4. >>>

Identity Operators:

Operators Description

is Returns true if identity of two operands are same, else false

is not Returns true if identity of two operands are not same, else false.

Example:

1. a=20

2. b=20

3. if(a is b):

4. print ?a,b have same identity?

5. else:

6. print ?a, b are different?

7. b=10

8. if(a is not b):

9. print ?a,b have different identity?

10. else:

11. print ?a,b have same identity?

Output:

1. >>>

2. a,b have same identity

3. a,b have different identity

4. >>>

Python Comments

Python supports two types of comments:

1) Single lined comment:

In case user wants to specify a single line comment, then comment must start with ?#?

Eg:

1. # This is single line comment.

2) Multi lined Comment:

Multi lined comment can be given inside triple quotes.

eg:

1. ''''' This

2. Is

3. Multipline comment'''

eg:

1. #single line comment

2. print "Hello Python"

3. '''''This is

4. multiline comment'''

